近兩年機器人理財(Robo-Advisor)這個詞大量出現在金融市場中,也有多家國內外金融機構在推銷這種型態的商品,並大量以智能與人工智慧(AI)來作為行銷的關鍵字,今天就要來仔細的分析幾類我所認識的理財機器人系統。 馬可維茲(Morkowitz)的投資組合理論(Portfolio Theory) 馬可維茲於1952年提出了投資組合理論,將金融市場中的各種資產簡化定義成預期報酬率、標準差與相關係數,在假設以上參數均為已知的狀況下,可以進行規劃求解得出「最小風險投資組合(Minimum Variance Portfolio)」與「最適投資組合(Optimal Portfolio)」,大部分的機器人理財業者均是以此種模型進行操作,除了有諾貝爾經濟學獎的加持外,對於現有的程式撰寫有相當的方便,許多程式均有規劃求解的套件可供使用。 馬可維茲的投資組合理論利用數學嚴謹的證明,資產配置對於投資組合波動度與報酬率有顯著的影響,將多種相關係數低的資產配置在一起,能夠降低投資組合波動度與提高預期的報酬率,例如債券與股票呈現負相關時,能夠配置出風險調整後報酬較高的組合,相對於單一股票或債券。 利用馬可維茲現代投資組合理論的機器人理財平台,通常會利用風險問卷來進行投資人分類,例如年齡、投資期間與風險承受度等,透過背後的評分邏輯將使用者分為三至四個風險屬性,假設情況如下: 投資人屬性 可承受年化波動率 積極型投資人 25%以上 穩健型投資人 15%~25% 保守型投資人 15%以下 利用過去各資產類別的走勢去計算報酬率、波動度與相關係數,作為投資組合評估的相關參數,由使用者作答的風險問卷來對應出可承受年化波動度,再以程式進行目標為「固定風險下的最佳報酬率」的最佳化,就可以得到最佳的權重組合。 Smart Beta Beta這個詞在金融市場中,代表市場報酬的相對於資產的變動係數,例如當S&P 500上漲1%時,你的投資組合上漲0.8%,大致可以說Beta為0.8,大多股票市場指數都是以「市值加權」的方式進行編制,背後邏輯就是每天在幫你追高殺低,以2018年為例,如果持有S&P 500指數而言,就會不斷的幫我們增持FAANG(Facebook, Amazon, Apple,…